NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2018-19

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

- (i): All functions f,g,h... are bounded real valued functions defined on [a,b] and $m \leq f \leq M$ on [a,b].
- (ii): Let $P: a = x_0 < x_1 < \dots < x_n = b$ denote a partition on [a, b]; Put $\Delta x_i = x_i x_{i-1}$ and $||P|| = \max \Delta x_i$.
- (iii): $M_i(f, P) := \sup\{f(x) : x \in [x_{i-1}, x_i]; m_i(f, P) := \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$ Set $\omega_i(f, P) = M_i(f, P) - m_i(f, P).$
- (iv): (the upper sum of f): $U(f,P) := \sum M_i(f,P)\Delta x_i$ (the lower sum of f). $L(f,P) := \sum m_i(f,P)\Delta x_i$.

Remark 1.1. It is clear that for any partition on [a, b], we always have

- (i) $m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$.
- (ii) L(-f, P) = -U(f, P) and U(-f, P) = -L(f, P).

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

- (i) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
- (ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i), we first claim that $L(f,P) \leq L(f,Q)$ if $P \subseteq Q$. By using the induction on l := #Q - #P, it suffices to show that $L(f,P) \leq L(f,Q)$ as l = 1. Let $P : a = x_0 < x_1 < \cdots < x_n = b$ and $Q = P \cup \{c\}$. Then $c \in (x_{s-1},x_s)$ for some s. Notice that we have

$$m_s(f, P) \le \min\{m_s(f, Q), m_{s+1}(f, Q)\}.$$

So, we have

$$m_s(f, P)(x_s - x_{s-1}) \le m_s(f, Q)(c - x_{s-1}) + m_{s+1}(f, Q)(x_s - c).$$

This gives the following inequality as desired.

$$(1.1) L(f,Q) - L(f,P) = m_s(f,Q)(c - x_{s-1}) + m_{s+1}(f,Q)(x_s - c) - m_s(f,P)(x_s - x_{s-1}) \ge 0.$$

Now by considering -f in the Inequality 1.1 above, we see that $U(f,Q) \leq U(f,P)$.

For Part (ii), let P and Q be any pair of partitions on [a,b]. Notice that $P \cup Q$ is also a partition on [a,b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (i) implies that

$$L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q).$$

The proof is complete.

Date: March 6, 2019.

The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of fover [a,b], write $\overline{\int_a^b} f$ (resp. $\int_a^b f$), is defined by

$$\overline{\int_a^b} f = \inf\{U(f, P) : P \text{ is a partation on } [a, b]\}.$$

(resp.

$$\int_a^b f = \sup\{L(f,P): P \text{ is a partation on } [a,b]\}.)$$

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and q both are bounded functions on [a,b]. With the notation as above, we always have

(*i*)

$$\underline{\int_a^b} f \leq \overline{\int_a^b} f.$$

$$\begin{array}{ll}
(ii) \ \underline{\int_a^b}(-f) = -\overline{\int_a^b}f. \\
(iii)
\end{array}$$

$$\underline{\int_a^b f + \underline{\int_a^b g}} \le \underline{\int_a^b (f+g)} \le \overline{\int_a^b (f+g)} \le \overline{\int_a^b f} + \overline{\int_a^b g}.$$

Proof. Part (i) follows from Lemma 1.2 at once.

Part (ii) is clearly obtained by L(-f,P) = -U(f,P). For proving the inequality $\underline{\int}_a^b f + \underline{\int}_a^b g \leq \underline{\int}_a^b (f+g) \leq$ first. It is clear that we have $L(f,P) + L(g,P) \leq L(f+g,P)$ for all partitions P on [a,b]. Now let P_1 and P_2 be any partition on [a,b]. Then by Lemma 1.2, we have

$$L(f, P_1) + L(g, P_2) \le L(f, P_1 \cup P_2) + L(g, P_1 \cup P_2) \le L(f + g, P_1 \cup P_2) \le \int_a^b (f + g).$$

So, we have

(1.2)
$$\underline{\int_{\underline{a}}^{b} f + \underline{\int_{\underline{a}}^{b} g} \le \underline{\int_{\underline{a}}^{b} (f + g)}.$$

As before, we consider -f and -g in the Inequality 1.2, we get $\overline{\int_a^b}(f+g) \leq \overline{\int_a^b}f + \overline{\int_a^b}g$ as desired.

The following example shows the strict inequality in Proposition 1.4 (iii) may hold in general.

Example 1.5. Define a function $f, g: [0,1] \to \mathbb{R}$ b

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ -1 & \text{otherwise.} \end{cases}$$

and

$$g(x) = \begin{cases} -1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ 1 & \text{otherwise.} \end{cases}$$

Then it is easy to see that $f + g \equiv 0$ and

$$\overline{\int_0^1} f = \overline{\int_0^1} g = 1 \quad and \quad \underline{\int_0^1} f = \underline{\int_0^1} g = -1.$$

So, we have

$$-2 = \int_{\underline{a}}^{\underline{b}} f + \int_{\underline{a}}^{\underline{b}} g < \int_{\underline{a}}^{\underline{b}} (f + g) = 0 = \overline{\int_{\underline{a}}^{\underline{b}}} (f + g) < \overline{\int_{\underline{a}}^{\underline{b}}} f + \overline{\int_{\underline{a}}^{\underline{b}}} g = 2.$$

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a,b] if $\overline{\int_b^a} f = \underline{\int_a^b} f$. In this case, we write $\int_a^b f$ for this common value and it is called the Riemann integral of f over [a,b].

Also, write R[a, b] for the class of Riemann integrable functions on [a, b].

Proposition 1.7. With the notation as above, R[a,b] is a vector space over \mathbb{R} and the integral

$$\int_{a}^{b} : f \in R[a, b] \mapsto \int_{a}^{b} f \in \mathbb{R}$$

defines a linear functional, that is, $\alpha f + \beta g \in R[a,b]$ and $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$ for all $f,g \in R[a,b]$ and $\alpha,\beta \in \mathbb{R}$.

Proof. Let $f,g \in R[a,b]$ and $\alpha,\beta \in \mathbb{R}$. Notice that if $\alpha \geq 0$, it is clear that $\overline{\int_a^b} \alpha f = \alpha \overline{\int_a^b} f = \alpha \int_a^b f$

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter. For a partition $P: a = x_0 < x_1 < \cdots < x_n = b$ and $1 \le i \le n$, put

$$\omega_i(f, P) := \sup\{|f(x) - f(x')| : x, x' \in [x_{i-1}, x_i]\}.$$

It is easy to see that $U(f, P) - L(f, P) = \sum_{i=1}^{n} \omega_i(f, P) \Delta x_i$.

Theorem 1.8. Let f be a bounded function on [a,b]. Then $f \in R[a,b]$ if and only if for all $\varepsilon > 0$, there is a partition $P: a = x_0 < \cdots < x_n = b$ on [a,b] such that

(1.3)
$$0 \le U(f,P) - L(f,P) = \sum_{i=1}^{n} \omega_i(f,P) \Delta x_i < \varepsilon.$$

Proof. Suppose that $f \in R[a,b]$. Let $\varepsilon > 0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f,P) < \overline{\int_a^b} f + \varepsilon$ and $\underline{\int_a^b} f - \varepsilon < L(f,Q)$. By considering the partition $P \cup Q$, we see that

$$\underline{\int_{a}^{b}} f - \varepsilon < L(f, Q) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, P) < \overline{\int_{a}^{b}} f + \varepsilon.$$

Since $\int_a^b f = \overline{\int_a^b} f$, we have $0 \le U(f, P \cup Q) - L(f, P \cup Q) < 2\varepsilon$. So, the partition $P \cup Q$ is as desired.

Conversely, let $\varepsilon > 0$, assume that the Inequality 1.3 above holds for some partition P. Notice that we have

$$L(f, P) \le \int_a^b f \le \overline{\int_a^b} f \le U(f, P).$$

So, we have $0 \le \overline{\int_a^b} f - \underline{\int_a^b} f < \varepsilon$ for all $\varepsilon > 0$. The proof is finished.

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a, b] if and only if the "size" of the discontinuous set of f is arbitrary small.

Example 1.10. Let $f:[0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p}, \text{ where } p, q \text{ are relatively prime positive integers;} \\ 0 & \text{otherwise.} \end{cases}$$

Then $f \in R[0,1]$.

(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q} = \{z_1, z_2, ...\}$. So, if we let m(D) be the "size" of the set D, then $m(D) = m(\bigcup_{i=1}^{\infty} \{z_i\}) = \sum_{i=1}^{\infty} m(\{z_i\}) = 0$, in here, you may think that the size of each set $\{z_i\}$ is 0.

Proof. Let $\varepsilon > 0$. By Theorem 1.8, it aims to find a partition P on [0,1] such that

$$U(f, P) - L(f, P) < \varepsilon$$
.

Notice that for $x \in [0,1]$ such that $f(x) \ge \varepsilon$ if and only if x = q/p for a pair of relatively prime positive integers p,q with $\frac{1}{p} \ge \varepsilon$. Since $1 \le q \le p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f(\frac{q}{p}) \ge \varepsilon$. So, if we let $S := \{x \in [0,1] : f(x) \ge \varepsilon\}$, then S is a finite subset of [0,1]. Let L be the number of the elements in S. Then, for any partition $P: a = x_0 < \cdots < x_n = 1$, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \left(\sum_{i: [x_{i-1}, x_i] \cap S = \emptyset} + \sum_{i: [x_{i-1}, x_i] \cap S \neq \emptyset}\right) \omega_i(f, P) \Delta x_i.$$

Notice that if $[x_{i-1}, x_i] \cap S = \emptyset$, then we have $\omega_i(f, P) \leq \varepsilon$ and thus,

$$\sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \omega_i(f,P)\Delta x_i \le \varepsilon \sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \Delta x_i \le \varepsilon (1-0).$$

On the other hand, since there are at most 2L sub-intervals $[x_{i-1}, x_i]$ such that $[x_{i-1}, x_i] \cap S \neq \emptyset$ and $\omega_i(f, P) \leq 1$ for all i = 1, ..., n, so, we have

$$\sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \omega_i(f,P)\Delta x_i \leq 1 \cdot \sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \Delta x_i \leq 2L\|P\|.$$

We can now conclude that for any partition P, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon + 2L \|P\|.$$

So, if we take a partition P with $||P|| < \varepsilon/(2L)$, then we have $\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \leq 2\varepsilon$. The proof is finished.

Proposition 1.11. Let f be a function defined on [a,b]. If f is either monotone or continuous on [a,b], then $f \in R[a,b]$.

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P: a = x_0 < \cdots < x_n = b$, we have $\omega_i(f, P) = f(x_i) - f(x_{i-1})$. So, if $||P|| < \varepsilon$, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i < \|P\| \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \|P\| (f(b) - f(a)) < \varepsilon(f(b) - f(a)).$$

Therefore, $f \in R[a, b]$ if f is monotone.

Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - f(x')| < \varepsilon$ as $x, x' \in [a, b]$ with $|x - x'| < \delta$. So, if we choose a partition P with $||P|| < \delta$, then $\omega_i(f, P) < \varepsilon$ for all i. This implies that

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon \sum_{i=1}^{n} \Delta x_i = \varepsilon (b - a).$$

The proof is complete.

Proposition 1.12. We have the following assertions.

- (i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_a^b f \leq \int_a^b g$.
- (ii) If $f \in R[a,b]$, then the absolute valued function $|f| \in R[a,b]$. In this case, we have $|\int_a^b f| \le \int_a^b |f|$.

Proof. For Part $\underline{(i)}$, it is clear that we have the inequality $U(f,P) \leq U(g,P)$ for any partition P. So, we have $\int_a^b f = \overline{\int_a^b} f \leq \overline{\int_a^b} g = \int_a^b g$. For Part $\underline{(ii)}$, the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality

For Part (ii), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality $||f|(x') - |f|(x'')| \le |f(x') - f(x'')|$ for all $x', x'' \in [a, b]$. Thus, we have $U(|f|, P) - L(|f|, P) \le U(f, P) - L(f, P)$ for any partition P on [a, b].

Finally, since we have $-f \leq |f| \leq f$, by Part (i), we have $|\int_a^b f| \leq \int_a^b |f|$ at once.

Proposition 1.13. Let a < c < b. We have $f \in R[a,b]$ if and only if the restrictions $f|_{[a,c]} \in R[a,c]$ and $f|_{[c,b]} \in R[c,b]$. In this case we have

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Proof. Let $f_1 := f|_{[a,c]}$ and $f_2 := f|_{[c,b]}$. It is clear that we always have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(P, f) - L(f, P)$$

for any partition P_1 on [a, c] and P_2 on [c, b] with $P = P_1 \cup P_2$.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since $f \in R[a,b]$, for any $\varepsilon > 0$, there is a partition Q on [a,b]

such that $U(f,Q) - L(f,Q) < \varepsilon$ by Theorem 1.8. Notice that there are partitions P_1 and P_2 on [a,c]and [c,b] respectively such that $P:=Q\cup\{c\}=P_1\cup P_2$. Thus, we have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(f, P) - L(f, P) \le U(f, Q) - L(f, Q) < \varepsilon.$$

So, we have $f_1 \in R[a, c]$ and $f_2 \in R[c, b]$.

It remains to show the Equation 1.4 above. Notice that for any partition P_1 on [a, c] and P_2 on [c, b], we have

$$L(f_1, P_1) + L(f_2, P_2) = L(f, P_1 \cup P_2) \le \int_a^b f = \int_a^b f.$$

So, we have $\int_a^c f + \int_c^b f \leq \int_a^b f$. Then the inverse inequality can be obtained at once by considering the function -f. Then the resulted is obtained by using Theorem 1.8.

Proposition 1.14. Let f and g be Riemann integrable functions defined ion [a,b]. Then the pointwise product function $f \cdot g \in R[a, b]$.

Proof. We first show that the square function f^2 is Riemann integrable. In fact, if we let M = $\sup\{|f(x)|:x\in[a,b]\}$, then we have $\omega_k(f^2,P)\leq 2M\omega_k(f,P)$ for any partition $P:a=x_0<\cdots< a_n=b$ because we always have $|f^2(x)-f^2(x')|\leq 2M|f(x)-f(x')|$ for all $x,x'\in[a,b]$. Then by Theorem 1.8, the square function $f^2\in R[a,b]$.

This, together with the identity $f \cdot g = \frac{1}{2}((f+g)^2 - f^2 - g^2)$. The result follows.

Remark 1.15. In the proof of Proposition 1.14, we have shown that if $f \in R[a,b]$, then so is its square function f^2 . However, the converse does not hold. For example, if we consider f(x) = 1 for $x \in \mathbb{Q} \cap [0,1] \ and \ f(x) = -1 \ for \ x \in \mathbb{Q}^c \cap [0,1], \ then \ f \notin R[0,1] \ but \ f^2 \equiv 1 \ on \ [0,1].$

Proposition 1.16. (Mean Value Theorem for Integrals)

Let f and g be the functions defined on [a,b]. Assume that f is continuous and g is a non-negative Riemann integrable function. Then, there is a point $\xi \in (a,b)$ such that

(1.5)
$$\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx.$$

Proof. By the continuity of f on [a, b], there exist two points x_1 and x_2 in [a, b] such that

$$f(x_1) = m := \min f(x)$$
; and $f(x_2) = M := \max f(x)$.

We may assume that $a \le x_1 < x_2 \le b$. From this, since $g \le 0$, we have

$$mg(x) \le f(x)g(x) \le Mg(x)$$

for all $x \in [a, b]$. From this and Proposition 1.14 above, we have

$$m\int_{a}^{b}g \le \int_{a}^{b}fg \le M\int_{a}^{b}g.$$

So, if $\int_a^b g = 0$, then the result follows at once. We may now suppose that $\int_a^b g > 0$. The above inequality shows that

$$m = f(x_1) \le \frac{\int_a^b fg}{\int_a^b g} \le f(x_2) = M.$$

Therefore, there is a point $\xi \in [x_1, x_2] \subseteq [a, b]$ so that the Equation 1.5 holds by using the Intermediate Value Theorem for the function f. Thus, it remains to show that such element ξ can be chosen in (a,b).

Let $a \le x_1 < x_2 \le b$ be as above.

If x_1 and x_2 can be found so that $a < x_1 < x_2 < b$, then the result is proved immediately since $\xi \in [x_1, x_2] \subset (a, b)$ in this case.

Now suppose that x_1 or x_2 does not exist in (a,b), i.e., m=f(a)< f(x) for all $x\in (a,b]$ or f(x) < f(b) = M for all $x \in [a, b)$.

Claim 1: If f(a) < f(x) for all $x \in [a, b]$, then $\int_a^b fg > f(a) \int_a^b g$ and hence, $\xi \in (a, x_2] \subseteq (a, b]$. For showing Claim1, put h(x) := f(x) - f(a) for $x \in [a, b]$. Then h is continuous on [a, b] and h > 0 on (a, b]. This implies that $\int_c^d h > 0$ for any subinterval $[c, d] \subseteq [a, b]$. (Why?)

On the other hand, since $\int_a^b g = \int_a^b g > 0$, there is a partition $P: a = x_0 < \cdots < x_n = b$ so that L(g, P) > 0. This implies that $m_k(g, P) > 0$ for some sub-interval $[x_{k-1}, x_k]$. Therefore, we have

$$\int_{a}^{b} hg \ge \int_{x_{k-1}}^{x_k} hg \ge m_k(g, P) \int_{x_{k-1}}^{x_k} h > 0.$$

Hence, we have $\int_a^b fg > f(a) \int_a^b g$. Claim 1 follows.

Similarly, one can show that if f(x) < f(b) = M for all $x \in [a, b)$, then we have $\int_a^b fg < f(b) \int_a^b g$. This, together with **Claim 1** give us that such ξ can be found in (a, b). The proof is finished.

2. Fundamental Theorem of Calculus

Now if $f \in R[a, b]$, then by Proposition 1.13, we can define a function $F : [a, b] \to \mathbb{R}$ by

(2.1)
$$F(c) = \begin{cases} 0 & \text{if } c = a \\ \int_a^c f & \text{if } a < c \le b. \end{cases}$$

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that $f \in R[a,b]$, we have the following assertion.

- (i) If there is a continuous function H on [a,b] which is differentiable on (a,b) with H'=f, then $\int_a^b f = H(b) - H(a)$. In this case, H is called an indefinite integral of f. (note: if H_1 and H_2 both are the indefinite integrals of f, then by the Mean Value Theorem, we have $H_2 = H_1 + constant$).
- (ii) The function F defined as in Eq. 2.1 above is continuous on [a,b]. Furthermore, if f is continuous on [a,b], then F' exists on (a,b) and F'=f on (a,b).

Proof. For Part (i), notice that for any partition $P: a = x_0 < \cdots < x_n = b$, then by the Mean Value Theorem, for each $[x_{i-1}, x_i]$, there is $\xi \in (x_{i-1}, x_i)$ such that $F(x_i) - F(x_{i-1}) = F'(\xi) \Delta x_i = f(\xi) \Delta x_i$. So, we have

$$L(f, P) \le \sum f(\xi) \Delta x_i = \sum F(x_i) - F(x_{i-1}) = F(b) - F(a) \le U(f, P)$$

for all partitions P on [a, b]. This gives

$$\int_{a}^{b} f = \int_{a}^{b} f \le F(b) - F(a) \le \overline{\int_{a}^{b}} f = \int_{a}^{b} f$$

as desired.

For showing the continuity of F in Part (ii), let a < c < x < b. If $|f| \le M$ on [a, b], then we have $|F(x)-F(c)|=|\int_c^x f| \leq M(x-c)$. So, $\lim_{x\to c+} F(x)=F(c)$. Similarly, we also have $\lim_{x\to c-} F(x)=$ F(c). Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any t > 0 with a < c < c + t < b, we have

$$\inf_{x \in [c,c+t]} f(x) \le \frac{1}{t} (F(c+t) - F(c)) = \frac{1}{t} \int_{c}^{c+t} f \le \sup_{x \in [c,c+t]} f(x).$$

Since f is continuous at c, we see that $\lim_{t\to 0+} \frac{1}{t}(F(c+t)-F(c)) = f(c)$. Similarly, we have $\lim_{t\to 0-} \frac{1}{t}(F(c+t)-F(c)) = f(c)$. So, we have F'(c) = f(c) as desired. The proof is finished.

3. Riemann Sums and Change of Variables formula

Definition 3.1. For each bounded function f on [a,b]. Call $R(f,P,\{\xi_i\}) := \sum f(\xi_i)\Delta x_i$, where $\xi_i \in [x_{i-1},x_i]$, the Riemann sum of f over [a,b].

We say that the Riemann sum $R(f, P, \{\xi_i\})$ converges to a number A as $||P|| \to 0$, write $A = \lim_{\|P\|\to 0} R(f, P, \{\xi_i\})$, if for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - R(f, P, \{\xi_i\})| < \varepsilon$$

whenever $||P|| < \delta$ and for any $\xi_i \in [x_{i-1}, x_i]$.

Proposition 3.2. Let f be a function defined on [a,b]. If the limit $\lim_{\|P\|\to 0} R(f,P,\{\xi_i\}) = A$ exists, then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition $P: a = x_0 < \cdots < x_n = b$ such that $|\sum_{k=1}^n f(\xi_k) \Delta x_k| < 1 + |A|$ for any $\xi_k \in [x_{k-1}, x_k]$. Since f is unbounded, we may assume that f is unbounded on $[a, x_1]$. In particular, we choose $\xi_k = x_k$ for k = 2, ..., n. Also, we can choose $\xi_1 \in [a, x_1]$ such that

$$|f(\xi_1)|\Delta x_1 > 1 + |A| + |\sum_{k=2}^n f(x_k)\Delta x_k|.$$

It leads to a contradiction because we have $1 + |A| > |f(\xi_1)| \Delta x_1 - |\sum_{k=2}^n f(x_k) \Delta x_k|$. The proof is finished.

Lemma 3.3. $f \in R[a,b]$ if and only if for any $\varepsilon > 0$, there is $\delta > 0$ such that $U(f,P) - L(f,P) < \varepsilon$ whenever $||P|| < \delta$.

Proof. The converse follows from Theorem 1.8.

Assume that f is integrable over [a,b]. Let $\varepsilon > 0$. Then there is a partition $Q: a = y_0 < ... < y_l = b$ on [a,b] such that $U(f,Q) - L(f,Q) < \varepsilon$. Now take $0 < \delta < \varepsilon/l$. Suppose that $P: a = x_0 < ... < x_n = b$ with $||P|| < \delta$. Then we have

$$U(f, P) - L(f, P) = I + II$$

where

$$I = \sum_{i:Q \cap [x_{i-1},x_i] = \emptyset} \omega_i(f,P) \Delta x_i;$$

and

$$II = \sum_{i:Q \cap [x_{i-1}, x_i] \neq \emptyset} \omega_i(f, P) \Delta x_i$$

Notice that we have

$$I \le U(f,Q) - L(f,Q) < \varepsilon$$

and

$$II \leq (M-m) \sum_{i:Q \cap [x_{i-1},x_i] \neq \emptyset} \Delta x_i \leq (M-m) \cdot 2l \cdot \frac{\varepsilon}{l} = 2(M-m)\varepsilon.$$

The proof is finished.

Theorem 3.4. $f \in R[a,b]$ if and only if the Riemann sum $R(f,P,\{\xi_i\})$ is convergent. In this case, $R(f,P,\{\xi_i\})$ converges to $\int_a^b f(x)dx$ as $||P|| \to 0$.

Proof. For the proof (\Rightarrow) : we first note that we always have

$$L(f, P) \le R(f, P, \{\xi_i\}) \le U(f, P)$$

and

$$L(f,P) \le \int_a^b f(x)dx \le U(f,P)$$

for any partition P and $\xi_i \in [x_{i-1}, x_i]$.

Now let $\varepsilon > 0$. Lemma 3.3 gives $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ as $||P|| < \delta$. Then we have

$$\left| \int_{a}^{b} f(x)dx - R(f, P, \{\xi_i\}) \right| < \varepsilon$$

as $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$. The necessary part is proved and $R(f, P, \{\xi_i\})$ converges to $\int_a^b f(x)dx$. For (\Leftarrow) : assume that there is a number A such that for any $\varepsilon > 0$, there is $\delta > 0$, we have

$$A - \varepsilon < R(f, P, \{\xi_i\}) < A + \varepsilon$$

for any partition P with $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$.

Notice that f is automatically bounded in this case by Proposition 3.2.

Now fix a partition P with $||P|| < \delta$. Then for each $[x_{i-1}, x_i]$, choose $\xi_i \in [x_{i-1}, x_i]$ such that $M_i(f, P) - \varepsilon \leq f(\xi_i)$. This implies that we have

$$U(f, P) - \varepsilon(b - a) \le R(f, P, \{\xi_i\}) < A + \varepsilon.$$

So we have shown that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

(3.1)
$$\overline{\int_a^b f(x)dx} \le U(f,P) \le A + \varepsilon(1+b-a).$$

By considering -f, note that the Riemann sum of -f will converge to -A. The inequality 3.1 will imply that for any $\varepsilon > 0$, there is a partition P such that

$$A - \varepsilon(1 + b - a) \le \underline{\int_a^b} f(x) dx \le \overline{\int_a^b} f(x) dx \le A + \varepsilon(1 + b - a).$$

The proof is finished.

Theorem 3.5. Let $f \in R[c,d]$ and let $\phi : [a,b] \longrightarrow [c,d]$ be a strictly increasing C^1 function with f(a) = c and f(b) = d.

Then $f \circ \phi \in R[a,b]$, moreover, we have

$$\int_{c}^{d} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt.$$

Proof. Let $A = \int_c^d f(x) dx$. By Theorem 3.4, we need to show that for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| < \varepsilon$$

for all $\xi_k \in [t_{k-1}, t_k]$ whenever $Q : a = t_0 < \dots < t_m = b$ with $||Q|| < \delta$.

Now let $\varepsilon > 0$. Then by Lemma 3.3 and Theorem 3.4, there is $\delta_1 > 0$ such that

$$(3.2) |A - \sum f(\eta_k) \triangle x_k| < \varepsilon$$

and

$$(3.3) \sum \omega_k(f, P) \triangle x_k < \varepsilon$$

for all $\eta_k \in [x_{k-1}, x_k]$ whenever $P : c = x_0 < \dots < x_m = d$ with $||P|| < \delta_1$.

Now put $x = \phi(t)$ for $t \in [a, b]$.

Now since ϕ and ϕ' are continuous on [a,b], there is $\delta > 0$ such that $|\phi(t) - \phi(t')| < \delta_1$ and $|\phi'(t) - \phi'(t')| < \varepsilon$ for all t,t' in [a,b] with $|t-t'| < \delta$.

Now let $Q: a = t_0 < ... < t_m = b$ with $||Q|| < \delta$. If we put $x_k = \phi(t_k)$, then $P: c = x_0 < ... < x_m = d$ is a partition on [c, d] with $||P|| < \delta_1$ because ϕ is strictly increasing.

Note that the Mean Value Theorem implies that for each $[t_{k-1}, t_k]$, there is $\xi_k^* \in (t_{k-1}, t_k)$ such that

$$\triangle x_k = \phi(t_k) - \phi(t_{k-1}) = \phi'(\xi_k^*) \Delta t_k.$$

This yields that

$$(3.4) |\Delta x_k - \phi'(\xi_k) \Delta t_k| < \varepsilon \Delta t_k$$

for any $\xi_k \in [t_{k-1}, t_k]$ for all k = 1, ..., m because of the choice of δ . Now for any $\xi_k \in [t_{k-1}, t_k]$, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| \leq |A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k|$$

$$+ |\sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k|$$

$$+ |\sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k|$$

Notice that inequality 3.2 implies that

$$|A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k| = |A - \sum f(\phi(\xi_k^*)) \triangle x_k| < \varepsilon.$$

Also, since we have $|\phi'(\xi_k^*) - \phi'(\xi_k)| < \varepsilon$ for all k = 1, ..., m, we have

$$|\sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k| \le M(b-a)\varepsilon$$

where $|f(x)| \leq M$ for all $x \in [c, d]$.

On the other hand, by using inequality 3.4 we have

$$|\phi'(\xi_k)\triangle t_k| \leq \triangle x_k + \varepsilon \triangle t_k$$

for all k. This, together with inequality 3.3 imply that

$$|\sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k|$$

$$\leq \sum \omega_k(f,P)|\phi'(\xi_k)\triangle t_k| \ (\because \phi(\xi_k^*),\phi(\xi_k) \in [x_{k-1},x_k])$$

$$\leq \sum \omega_k(f,P)(\triangle x_k + \varepsilon \triangle t_k)$$

$$\leq \varepsilon + 2M(b-a)\varepsilon.$$

Finally by inequality 3.5, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\Delta t_k| \le \varepsilon + M(b-a)\varepsilon + \varepsilon + 2M(b-a)\varepsilon.$$

The proof is finished.

IMPROPER RIEMANN INTEGRALS

Definition 4.1. Let $-\infty < a < b < \infty$.

- (i) Let f be a function defined on $[a,\infty)$. Assume that the restriction $f|_{[a,T]}$ is integrable over [a,T] for all T > a. Put $\int_{a}^{\infty} f := \lim_{T \to \infty} \int_{a}^{T} f$ if this limit exists. Similarly, we can define $\int_{-\infty}^{b} f$ if f is defined on $(-\infty, b]$.
- (ii) If f is defined on (a,b] and $f|_{[c,b]} \in R[c,b]$ for all a < c < b. Put $\int_a^b f := \lim_{c \to a+} \int_a^b f$ if it

Similarly, we can define $\int_a^b f$ if f is defined on [a,b). (iii) As f is defined on \mathbb{R} , if $\int_0^\infty f$ and $\int_{-\infty}^0 f$ both exist, then we put $\int_{-\infty}^\infty f = \int_{-\infty}^0 f + \int_0^\infty f$. In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the integrals are convergent.

Example 4.2. Define (formally) an improper integral $\Gamma(s)$ (called the Γ -function) as follows:

$$\Gamma(s) := \int_0^\infty x^{s-1} e^{-x} dx$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if s > 0.

Proof. Put $I(s) := \int_0^1 x^{s-1} e^{-x} dx$ and $II(s) := \int_1^\infty x^{s-1} e^{-x} dx$. We first claim that the integral II(s)is convergent for all $s \in \mathbb{R}$.

In fact, if we fix $s \in \mathbb{R}$, then we have

$$\lim_{x \to \infty} \frac{x^{s-1}}{e^{x/2}} = 0.$$

So there is M > 1 such that $\frac{x^{s-1}}{e^{x/2}} \leq 1$ for all $x \geq M$. Thus we have

$$0 \leq \int_M^\infty x^{s-1} e^{-x} dx \leq \int_M^\infty e^{-x/2} dx < \infty.$$

Therefore we need to show that the integral I(s) is convergent if and only if s > 0. Note that for $0 < \eta < 1$, we have

$$0 \le \int_{\eta}^{1} x^{s-1} e^{-x} dx \le \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{1}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -\ln \eta & \text{otherwise} \end{cases}$$

Thus the integral $I(s) = \lim_{\eta \to 0+} \int_{\eta}^{1} x^{s-1} e^{-x} dx$ is convergent if s > 0.

Conversely, we also have

$$\int_{\eta}^{1} x^{s-1} e^{-x} dx \ge e^{-1} \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{e^{-1}}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -e^{-1} \ln \eta & \text{otherwise} \end{cases}$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} dx$ is divergent as $\eta \to 0+$. The result follows.

References

[1] R.G. Bartle and D.R. Sherbert, Introduction to real analysis, Fourth edition, Wiley, (2011).